TSTP Solution File: PUZ084^1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : PUZ084^1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:13:19 EDT 2023

% Result   : Theorem 0.21s 0.55s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem    : PUZ084^1 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.14  % Command    : do_cvc5 %s %d
% 0.13/0.35  % Computer : n012.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit   : 300
% 0.13/0.35  % WCLimit    : 300
% 0.13/0.35  % DateTime   : Sat Aug 26 22:21:55 EDT 2023
% 0.13/0.35  % CPUTime    : 
% 0.21/0.49  %----Proving TH0
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  % File     : PUZ084^1 : TPTP v8.1.2. Released v4.0.0.
% 0.21/0.50  % Domain   : Logic Calculi (Espistemic logic)
% 0.21/0.50  % Problem  : The friends puzzle - reflexivity for Peter's wife
% 0.21/0.50  % Version  : [Ben09] axioms.
% 0.21/0.50  % English  : (i) Peter is a friend of John, so if Peter knows that John knows
% 0.21/0.50  %            something then John knows that Peter knows the same thing. 
% 0.21/0.50  %            (ii) Peter is married, so if Peter's wife knows something, then
% 0.21/0.50  %            Peter knows the same thing. John and Peter have an appointment,
% 0.21/0.50  %            let us consider the following situation: (a) Peter knows the time
% 0.21/0.50  %            of their appointment. (b) Peter also knows that John knows the
% 0.21/0.50  %            place of their appointment. Moreover, (c) Peter's wife knows that
% 0.21/0.50  %            if Peter knows the time of their appointment, then John knows
% 0.21/0.50  %            that too (since John and Peter are friends). Finally, (d) Peter
% 0.21/0.50  %            knows that if John knows the place and the time of their
% 0.21/0.50  %            appointment, then John knows that he has an appointment. From
% 0.21/0.50  %            this situation we want to prove (e) that each of the two friends
% 0.21/0.50  %            knows that the other one knows that he has an appointment.
% 0.21/0.50  
% 0.21/0.50  % Refs     : [Gol92] Goldblatt (1992), Logics of Time and Computation
% 0.21/0.50  %          : [Bal98] Baldoni (1998), Normal Multimodal Logics: Automatic De
% 0.21/0.50  %          : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% 0.21/0.50  % Source   : [Ben09]
% 0.21/0.50  % Names    : mmex1.p [Ben09]
% 0.21/0.50  
% 0.21/0.50  % Status   : Theorem
% 0.21/0.50  % Rating   : 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.33 v4.0.0
% 0.21/0.50  % Syntax   : Number of formulae    :   73 (  31 unt;  35 typ;  31 def)
% 0.21/0.50  %            Number of atoms       :  112 (  36 equ;   0 cnn)
% 0.21/0.50  %            Maximal formula atoms :    6 (   2 avg)
% 0.21/0.50  %            Number of connectives :  138 (   4   ~;   4   |;   8   &; 114   @)
% 0.21/0.50  %                                         (   0 <=>;   8  =>;   0  <=;   0 <~>)
% 0.21/0.50  %            Maximal formula depth :    9 (   1 avg)
% 0.21/0.50  %            Number of types       :    3 (   1 usr)
% 0.21/0.50  %            Number of type conns  :  178 ( 178   >;   0   *;   0   +;   0  <<)
% 0.21/0.50  %            Number of symbols     :   42 (  40 usr;   7 con; 0-3 aty)
% 0.21/0.50  %            Number of variables   :   85 (  50   ^;  29   !;   6   ?;  85   :)
% 0.21/0.50  % SPC      : TH0_THM_EQU_NAR
% 0.21/0.50  
% 0.21/0.50  % Comments : 
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----Include embedding of quantified multimodal logic in simple type theory
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----Declaration of additional base type mu
% 0.21/0.50  thf(mu_type,type,
% 0.21/0.50      mu: $tType ).
% 0.21/0.50  
% 0.21/0.50  %----Equality
% 0.21/0.50  thf(meq_ind_type,type,
% 0.21/0.50      meq_ind: mu > mu > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(meq_ind,definition,
% 0.21/0.50      ( meq_ind
% 0.21/0.50      = ( ^ [X: mu,Y: mu,W: $i] : ( X = Y ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(meq_prop_type,type,
% 0.21/0.50      meq_prop: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(meq_prop,definition,
% 0.21/0.50      ( meq_prop
% 0.21/0.50      = ( ^ [X: $i > $o,Y: $i > $o,W: $i] :
% 0.21/0.50            ( ( X @ W )
% 0.21/0.50            = ( Y @ W ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Modal operators not, or, box, Pi 
% 0.21/0.50  thf(mnot_type,type,
% 0.21/0.50      mnot: ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mnot,definition,
% 0.21/0.50      ( mnot
% 0.21/0.50      = ( ^ [Phi: $i > $o,W: $i] :
% 0.21/0.50            ~ ( Phi @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mor_type,type,
% 0.21/0.50      mor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mor,definition,
% 0.21/0.50      ( mor
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o,W: $i] :
% 0.21/0.50            ( ( Phi @ W )
% 0.21/0.50            | ( Psi @ W ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mand_type,type,
% 0.21/0.50      mand: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mand,definition,
% 0.21/0.50      ( mand
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mnot @ ( mor @ ( mnot @ Phi ) @ ( mnot @ Psi ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mimplies_type,type,
% 0.21/0.50      mimplies: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mimplies,definition,
% 0.21/0.50      ( mimplies
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mor @ ( mnot @ Phi ) @ Psi ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mimplied_type,type,
% 0.21/0.50      mimplied: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mimplied,definition,
% 0.21/0.50      ( mimplied
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mor @ ( mnot @ Psi ) @ Phi ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mequiv_type,type,
% 0.21/0.50      mequiv: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mequiv,definition,
% 0.21/0.50      ( mequiv
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mand @ ( mimplies @ Phi @ Psi ) @ ( mimplies @ Psi @ Phi ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mxor_type,type,
% 0.21/0.50      mxor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mxor,definition,
% 0.21/0.50      ( mxor
% 0.21/0.50      = ( ^ [Phi: $i > $o,Psi: $i > $o] : ( mnot @ ( mequiv @ Phi @ Psi ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Universal quantification: individuals
% 0.21/0.50  thf(mforall_ind_type,type,
% 0.21/0.50      mforall_ind: ( mu > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mforall_ind,definition,
% 0.21/0.50      ( mforall_ind
% 0.21/0.50      = ( ^ [Phi: mu > $i > $o,W: $i] :
% 0.21/0.50          ! [X: mu] : ( Phi @ X @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mforall_prop_type,type,
% 0.21/0.50      mforall_prop: ( ( $i > $o ) > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mforall_prop,definition,
% 0.21/0.50      ( mforall_prop
% 0.21/0.50      = ( ^ [Phi: ( $i > $o ) > $i > $o,W: $i] :
% 0.21/0.50          ! [P: $i > $o] : ( Phi @ P @ W ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mexists_ind_type,type,
% 0.21/0.50      mexists_ind: ( mu > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mexists_ind,definition,
% 0.21/0.50      ( mexists_ind
% 0.21/0.50      = ( ^ [Phi: mu > $i > $o] :
% 0.21/0.50            ( mnot
% 0.21/0.50            @ ( mforall_ind
% 0.21/0.50              @ ^ [X: mu] : ( mnot @ ( Phi @ X ) ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mexists_prop_type,type,
% 0.21/0.50      mexists_prop: ( ( $i > $o ) > $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mexists_prop,definition,
% 0.21/0.50      ( mexists_prop
% 0.21/0.50      = ( ^ [Phi: ( $i > $o ) > $i > $o] :
% 0.21/0.50            ( mnot
% 0.21/0.50            @ ( mforall_prop
% 0.21/0.50              @ ^ [P: $i > $o] : ( mnot @ ( Phi @ P ) ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mtrue_type,type,
% 0.21/0.50      mtrue: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mtrue,definition,
% 0.21/0.50      ( mtrue
% 0.21/0.50      = ( ^ [W: $i] : $true ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mfalse_type,type,
% 0.21/0.50      mfalse: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mfalse,definition,
% 0.21/0.50      ( mfalse
% 0.21/0.50      = ( mnot @ mtrue ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mbox_type,type,
% 0.21/0.50      mbox: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mbox,definition,
% 0.21/0.50      ( mbox
% 0.21/0.50      = ( ^ [R: $i > $i > $o,Phi: $i > $o,W: $i] :
% 0.21/0.50          ! [V: $i] :
% 0.21/0.50            ( ~ ( R @ W @ V )
% 0.21/0.50            | ( Phi @ V ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mdia_type,type,
% 0.21/0.50      mdia: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mdia,definition,
% 0.21/0.50      ( mdia
% 0.21/0.50      = ( ^ [R: $i > $i > $o,Phi: $i > $o] : ( mnot @ ( mbox @ R @ ( mnot @ Phi ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Definition of properties of accessibility relations
% 0.21/0.50  thf(mreflexive_type,type,
% 0.21/0.50      mreflexive: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mreflexive,definition,
% 0.21/0.50      ( mreflexive
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i] : ( R @ S @ S ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(msymmetric_type,type,
% 0.21/0.50      msymmetric: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(msymmetric,definition,
% 0.21/0.50      ( msymmetric
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i] :
% 0.21/0.50            ( ( R @ S @ T )
% 0.21/0.50           => ( R @ T @ S ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mserial_type,type,
% 0.21/0.50      mserial: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mserial,definition,
% 0.21/0.50      ( mserial
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i] :
% 0.21/0.50          ? [T: $i] : ( R @ S @ T ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mtransitive_type,type,
% 0.21/0.50      mtransitive: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mtransitive,definition,
% 0.21/0.50      ( mtransitive
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i,U: $i] :
% 0.21/0.50            ( ( ( R @ S @ T )
% 0.21/0.50              & ( R @ T @ U ) )
% 0.21/0.50           => ( R @ S @ U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(meuclidean_type,type,
% 0.21/0.50      meuclidean: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(meuclidean,definition,
% 0.21/0.50      ( meuclidean
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i,U: $i] :
% 0.21/0.50            ( ( ( R @ S @ T )
% 0.21/0.50              & ( R @ S @ U ) )
% 0.21/0.50           => ( R @ T @ U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mpartially_functional_type,type,
% 0.21/0.50      mpartially_functional: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mpartially_functional,definition,
% 0.21/0.50      ( mpartially_functional
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i,T: $i,U: $i] :
% 0.21/0.50            ( ( ( R @ S @ T )
% 0.21/0.50              & ( R @ S @ U ) )
% 0.21/0.50           => ( T = U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mfunctional_type,type,
% 0.21/0.50      mfunctional: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mfunctional,definition,
% 0.21/0.50      ( mfunctional
% 0.21/0.50      = ( ^ [R: $i > $i > $o] :
% 0.21/0.50          ! [S: $i] :
% 0.21/0.50          ? [T: $i] :
% 0.21/0.50            ( ( R @ S @ T )
% 0.21/0.50            & ! [U: $i] :
% 0.21/0.50                ( ( R @ S @ U )
% 0.21/0.50               => ( T = U ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(mweakly_dense_type,type,
% 0.21/0.50      mweakly_dense: ( $i > $i > $o ) > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(mweakly_dense,definition,
% 0.21/0.50      ( mweakly_dense
% 0.21/0.51      = ( ^ [R: $i > $i > $o] :
% 0.21/0.51          ! [S: $i,T: $i,U: $i] :
% 0.21/0.51            ( ( R @ S @ T )
% 0.21/0.51           => ? [U: $i] :
% 0.21/0.51                ( ( R @ S @ U )
% 0.21/0.51                & ( R @ U @ T ) ) ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  thf(mweakly_connected_type,type,
% 0.21/0.51      mweakly_connected: ( $i > $i > $o ) > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(mweakly_connected,definition,
% 0.21/0.51      ( mweakly_connected
% 0.21/0.51      = ( ^ [R: $i > $i > $o] :
% 0.21/0.51          ! [S: $i,T: $i,U: $i] :
% 0.21/0.51            ( ( ( R @ S @ T )
% 0.21/0.51              & ( R @ S @ U ) )
% 0.21/0.51           => ( ( R @ T @ U )
% 0.21/0.51              | ( T = U )
% 0.21/0.51              | ( R @ U @ T ) ) ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  thf(mweakly_directed_type,type,
% 0.21/0.51      mweakly_directed: ( $i > $i > $o ) > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(mweakly_directed,definition,
% 0.21/0.51      ( mweakly_directed
% 0.21/0.51      = ( ^ [R: $i > $i > $o] :
% 0.21/0.51          ! [S: $i,T: $i,U: $i] :
% 0.21/0.51            ( ( ( R @ S @ T )
% 0.21/0.51              & ( R @ S @ U ) )
% 0.21/0.51           => ? [V: $i] :
% 0.21/0.51                ( ( R @ T @ V )
% 0.21/0.51                & ( R @ U @ V ) ) ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  %----Definition of validity
% 0.21/0.51  thf(mvalid_type,type,
% 0.21/0.51      mvalid: ( $i > $o ) > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(mvalid,definition,
% 0.21/0.51      ( mvalid
% 0.21/0.51      = ( ^ [Phi: $i > $o] :
% 0.21/0.51          ! [W: $i] : ( Phi @ W ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  %----Definition of invalidity
% 0.21/0.51  thf(minvalid_type,type,
% 0.21/0.51      minvalid: ( $i > $o ) > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(minvalid,definition,
% 0.21/0.51      ( minvalid
% 0.21/0.51      = ( ^ [Phi: $i > $o] :
% 0.21/0.51          ! [W: $i] :
% 0.21/0.51            ~ ( Phi @ W ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  %----Definition of satisfiability
% 0.21/0.51  thf(msatisfiable_type,type,
% 0.21/0.51      msatisfiable: ( $i > $o ) > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(msatisfiable,definition,
% 0.21/0.51      ( msatisfiable
% 0.21/0.51      = ( ^ [Phi: $i > $o] :
% 0.21/0.51          ? [W: $i] : ( Phi @ W ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  %----Definition of countersatisfiability
% 0.21/0.51  thf(mcountersatisfiable_type,type,
% 0.21/0.51      mcountersatisfiable: ( $i > $o ) > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(mcountersatisfiable,definition,
% 0.21/0.51      ( mcountersatisfiable
% 0.21/0.51      = ( ^ [Phi: $i > $o] :
% 0.21/0.51          ? [W: $i] :
% 0.21/0.51            ~ ( Phi @ W ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  %------------------------------------------------------------------------------
% 0.21/0.51  %------------------------------------------------------------------------------
% 0.21/0.51  thf(peter,type,
% 0.21/0.51      peter: $i > $i > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(john,type,
% 0.21/0.51      john: $i > $i > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(wife,type,
% 0.21/0.51      wife: ( $i > $i > $o ) > $i > $i > $o ).
% 0.21/0.51  
% 0.21/0.51  thf(refl_peter,axiom,
% 0.21/0.51      mreflexive @ peter ).
% 0.21/0.51  
% 0.21/0.51  thf(refl_john,axiom,
% 0.21/0.51      mreflexive @ john ).
% 0.21/0.51  
% 0.21/0.51  thf(refl_wife_peter,axiom,
% 0.21/0.51      mreflexive @ ( wife @ peter ) ).
% 0.21/0.51  
% 0.21/0.51  thf(trans_peter,axiom,
% 0.21/0.51      mtransitive @ peter ).
% 0.21/0.51  
% 0.21/0.51  thf(trans_john,axiom,
% 0.21/0.51      mtransitive @ john ).
% 0.21/0.51  
% 0.21/0.51  thf(trans_wife_peter,axiom,
% 0.21/0.51      mtransitive @ ( wife @ peter ) ).
% 0.21/0.51  
% 0.21/0.51  thf(conj,conjecture,
% 0.21/0.51      ( mvalid
% 0.21/0.51      @ ( mforall_prop
% 0.21/0.51        @ ^ [A: $i > $o] : ( mimplies @ ( mbox @ ( wife @ peter ) @ A ) @ A ) ) ) ).
% 0.21/0.51  
% 0.21/0.51  %------------------------------------------------------------------------------
% 0.21/0.51  ------- convert to smt2 : /export/starexec/sandbox/tmp/tmp.H2jRftm6Oq/cvc5---1.0.5_3689.p...
% 0.21/0.51  (declare-sort $$unsorted 0)
% 0.21/0.51  (declare-sort tptp.mu 0)
% 0.21/0.51  (declare-fun tptp.meq_ind (tptp.mu tptp.mu $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.meq_ind (lambda ((X tptp.mu) (Y tptp.mu) (W $$unsorted)) (= X Y))))
% 0.21/0.51  (declare-fun tptp.meq_prop ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.meq_prop (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (W $$unsorted)) (= (@ X W) (@ Y W)))))
% 0.21/0.51  (declare-fun tptp.mnot ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mnot (lambda ((Phi (-> $$unsorted Bool)) (W $$unsorted)) (not (@ Phi W)))))
% 0.21/0.51  (declare-fun tptp.mor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (W $$unsorted)) (or (@ Phi W) (@ Psi W)))))
% 0.21/0.51  (declare-fun tptp.mand ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mand (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mor (@ tptp.mnot Phi)) (@ tptp.mnot Psi))) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.mimplies ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mimplies (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Phi)) Psi) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.mimplied ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mimplied (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Psi)) Phi) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.mequiv ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mequiv (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimplies Phi) Psi)) (@ (@ tptp.mimplies Psi) Phi)) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.mxor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mxor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mequiv Phi) Psi)) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.mforall_ind ((-> tptp.mu $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mforall_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.mu)) (@ (@ Phi X) W)))))
% 0.21/0.51  (declare-fun tptp.mforall_prop ((-> (-> $$unsorted Bool) $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mforall_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (W $$unsorted)) (forall ((P (-> $$unsorted Bool))) (@ (@ Phi P) W)))))
% 0.21/0.51  (declare-fun tptp.mexists_ind ((-> tptp.mu $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mexists_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_ind (lambda ((X tptp.mu) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi X)) __flatten_var_0)))) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.mexists_prop ((-> (-> $$unsorted Bool) $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mexists_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_prop (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi P)) __flatten_var_0)))) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.mtrue ($$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mtrue (lambda ((W $$unsorted)) true)))
% 0.21/0.51  (declare-fun tptp.mfalse ($$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mfalse (@ tptp.mnot tptp.mtrue)))
% 0.21/0.51  (declare-fun tptp.mbox ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (W $$unsorted)) (forall ((V $$unsorted)) (or (not (@ (@ R W) V)) (@ Phi V))))))
% 0.21/0.51  (declare-fun tptp.mdia ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.21/0.51  (assert (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mbox R) (@ tptp.mnot Phi))) __flatten_var_0))))
% 0.21/0.51  (declare-fun tptp.mreflexive ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.51  (assert (= tptp.mreflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (@ (@ R S) S)))))
% 0.21/0.51  (declare-fun tptp.msymmetric ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.51  (assert (= tptp.msymmetric (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted)) (=> (@ (@ R S) T) (@ (@ R T) S))))))
% 0.21/0.51  (declare-fun tptp.mserial ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.51  (assert (= tptp.mserial (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (@ (@ R S) T))))))
% 0.21/0.51  (declare-fun tptp.mtransitive ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.51  (assert (= tptp.mtransitive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ (@ R T) U)) (@ _let_1 U)))))))
% 0.21/0.51  (declare-fun tptp.meuclidean ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.51  (assert (= tptp.meuclidean (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (@ (@ R T) U)))))))
% 0.21/0.51  (declare-fun tptp.mpartially_functional ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.51  (assert (= tptp.mpartially_functional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (= T U)))))))
% 0.21/0.55  (declare-fun tptp.mfunctional ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.55  (assert (= tptp.mfunctional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (and (@ (@ R S) T) (forall ((U $$unsorted)) (=> (@ (@ R S) U) (= T U)))))))))
% 0.21/0.55  (declare-fun tptp.mweakly_dense ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.55  (assert (= tptp.mweakly_dense (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (=> (@ (@ R S) T) (exists ((U $$unsorted)) (and (@ (@ R S) U) (@ (@ R U) T))))))))
% 0.21/0.55  (declare-fun tptp.mweakly_connected ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.55  (assert (= tptp.mweakly_connected (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (or (@ (@ R T) U) (= T U) (@ (@ R U) T))))))))
% 0.21/0.55  (declare-fun tptp.mweakly_directed ((-> $$unsorted $$unsorted Bool)) Bool)
% 0.21/0.55  (assert (= tptp.mweakly_directed (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (exists ((V $$unsorted)) (and (@ (@ R T) V) (@ (@ R U) V)))))))))
% 0.21/0.55  (declare-fun tptp.mvalid ((-> $$unsorted Bool)) Bool)
% 0.21/0.55  (assert (= tptp.mvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ Phi W)))))
% 0.21/0.55  (declare-fun tptp.minvalid ((-> $$unsorted Bool)) Bool)
% 0.21/0.55  (assert (= tptp.minvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ Phi W))))))
% 0.21/0.55  (declare-fun tptp.msatisfiable ((-> $$unsorted Bool)) Bool)
% 0.21/0.55  (assert (= tptp.msatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ Phi W)))))
% 0.21/0.55  (declare-fun tptp.mcountersatisfiable ((-> $$unsorted Bool)) Bool)
% 0.21/0.55  (assert (= tptp.mcountersatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ Phi W))))))
% 0.21/0.55  (declare-fun tptp.peter ($$unsorted $$unsorted) Bool)
% 0.21/0.55  (declare-fun tptp.john ($$unsorted $$unsorted) Bool)
% 0.21/0.55  (declare-fun tptp.wife ((-> $$unsorted $$unsorted Bool) $$unsorted $$unsorted) Bool)
% 0.21/0.55  (assert (@ tptp.mreflexive tptp.peter))
% 0.21/0.55  (assert (@ tptp.mreflexive tptp.john))
% 0.21/0.55  (assert (@ tptp.mreflexive (@ tptp.wife tptp.peter)))
% 0.21/0.55  (assert (@ tptp.mtransitive tptp.peter))
% 0.21/0.55  (assert (@ tptp.mtransitive tptp.john))
% 0.21/0.55  (assert (@ tptp.mtransitive (@ tptp.wife tptp.peter)))
% 0.21/0.55  (assert (not (@ tptp.mvalid (@ tptp.mforall_prop (lambda ((A (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mimplies (@ (@ tptp.mbox (@ tptp.wife tptp.peter)) A)) A) __flatten_var_0))))))
% 0.21/0.55  (set-info :filename cvc5---1.0.5_3689)
% 0.21/0.55  (check-sat-assuming ( true ))
% 0.21/0.55  ------- get file name : TPTP file name is PUZ084^1
% 0.21/0.55  ------- cvc5-thf : /export/starexec/sandbox/solver/bin/cvc5---1.0.5_3689.smt2...
% 0.21/0.55  --- Run --ho-elim --full-saturate-quant at 10...
% 0.21/0.55  % SZS status Theorem for PUZ084^1
% 0.21/0.55  % SZS output start Proof for PUZ084^1
% 0.21/0.55  (
% 0.21/0.55  (let ((_let_1 (not (@ tptp.mvalid (@ tptp.mforall_prop (lambda ((A (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mimplies (@ (@ tptp.mbox (@ tptp.wife tptp.peter)) A)) A) __flatten_var_0))))))) (let ((_let_2 (@ tptp.wife tptp.peter))) (let ((_let_3 (@ tptp.mreflexive _let_2))) (let ((_let_4 (= tptp.mcountersatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ Phi W))))))) (let ((_let_5 (= tptp.msatisfiable (lambda ((Phi (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ Phi W)))))) (let ((_let_6 (= tptp.minvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ Phi W))))))) (let ((_let_7 (= tptp.mvalid (lambda ((Phi (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ Phi W)))))) (let ((_let_8 (= tptp.mweakly_directed (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (exists ((V $$unsorted)) (and (@ (@ R T) V) (@ (@ R U) V)))))))))) (let ((_let_9 (= tptp.mweakly_connected (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (or (@ (@ R T) U) (= T U) (@ (@ R U) T))))))))) (let ((_let_10 (= tptp.mweakly_dense (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (=> (@ (@ R S) T) (exists ((U $$unsorted)) (and (@ (@ R S) U) (@ (@ R U) T))))))))) (let ((_let_11 (= tptp.mfunctional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (and (@ (@ R S) T) (forall ((U $$unsorted)) (=> (@ (@ R S) U) (= T U)))))))))) (let ((_let_12 (= tptp.mpartially_functional (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (= T U)))))))) (let ((_let_13 (= tptp.meuclidean (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ _let_1 U)) (@ (@ R T) U)))))))) (let ((_let_14 (= tptp.mtransitive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted) (U $$unsorted)) (let ((_let_1 (@ R S))) (=> (and (@ _let_1 T) (@ (@ R T) U)) (@ _let_1 U)))))))) (let ((_let_15 (= tptp.mserial (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (exists ((T $$unsorted)) (@ (@ R S) T))))))) (let ((_let_16 (= tptp.msymmetric (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted) (T $$unsorted)) (=> (@ (@ R S) T) (@ (@ R T) S))))))) (let ((_let_17 (= tptp.mreflexive (lambda ((R (-> $$unsorted $$unsorted Bool))) (forall ((S $$unsorted)) (@ (@ R S) S)))))) (let ((_let_18 (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mbox R) (@ tptp.mnot Phi))) __flatten_var_0))))) (let ((_let_19 (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (Phi (-> $$unsorted Bool)) (W $$unsorted)) (forall ((V $$unsorted)) (or (not (@ (@ R W) V)) (@ Phi V))))))) (let ((_let_20 (= tptp.mfalse (@ tptp.mnot tptp.mtrue)))) (let ((_let_21 (= tptp.mtrue (lambda ((W $$unsorted)) true)))) (let ((_let_22 (= tptp.mexists_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_prop (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi P)) __flatten_var_0)))) __flatten_var_0))))) (let ((_let_23 (= tptp.mexists_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ tptp.mforall_ind (lambda ((X tptp.mu) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ Phi X)) __flatten_var_0)))) __flatten_var_0))))) (let ((_let_24 (= tptp.mforall_prop (lambda ((Phi (-> (-> $$unsorted Bool) $$unsorted Bool)) (W $$unsorted)) (forall ((P (-> $$unsorted Bool))) (@ (@ Phi P) W)))))) (let ((_let_25 (= tptp.mforall_ind (lambda ((Phi (-> tptp.mu $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.mu)) (@ (@ Phi X) W)))))) (let ((_let_26 (= tptp.mxor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mequiv Phi) Psi)) __flatten_var_0))))) (let ((_let_27 (= tptp.mequiv (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimplies Phi) Psi)) (@ (@ tptp.mimplies Psi) Phi)) __flatten_var_0))))) (let ((_let_28 (= tptp.mimplied (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Psi)) Phi) __flatten_var_0))))) (let ((_let_29 (= tptp.mimplies (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot Phi)) Psi) __flatten_var_0))))) (let ((_let_30 (= tptp.mand (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ tptp.mnot (@ (@ tptp.mor (@ tptp.mnot Phi)) (@ tptp.mnot Psi))) __flatten_var_0))))) (let ((_let_31 (= tptp.mor (lambda ((Phi (-> $$unsorted Bool)) (Psi (-> $$unsorted Bool)) (W $$unsorted)) (or (@ Phi W) (@ Psi W)))))) (let ((_let_32 (= tptp.mnot (lambda ((Phi (-> $$unsorted Bool)) (W $$unsorted)) (not (@ Phi W)))))) (let ((_let_33 (= tptp.meq_prop (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (W $$unsorted)) (= (@ X W) (@ Y W)))))) (let ((_let_34 (= tptp.meq_ind (lambda ((X tptp.mu) (Y tptp.mu) (W $$unsorted)) (= X Y))))) (let ((_let_35 (forall ((S $$unsorted)) (ho_4 (ho_3 (ho_7 k_6 k_2) S) S)))) (let ((_let_36 (ho_4 (ho_3 (ho_7 k_6 k_2) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8))) (let ((_let_37 (ASSUME :args (_let_34)))) (let ((_let_38 (ASSUME :args (_let_33)))) (let ((_let_39 (ASSUME :args (_let_32)))) (let ((_let_40 (ASSUME :args (_let_31)))) (let ((_let_41 (EQ_RESOLVE (ASSUME :args (_let_30)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_40 _let_39 _let_38 _let_37) :args (_let_30 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_42 (EQ_RESOLVE (ASSUME :args (_let_29)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_29 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_43 (EQ_RESOLVE (ASSUME :args (_let_28)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_28 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_44 (EQ_RESOLVE (ASSUME :args (_let_27)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_27 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_45 (EQ_RESOLVE (ASSUME :args (_let_26)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_26 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_46 (ASSUME :args (_let_25)))) (let ((_let_47 (ASSUME :args (_let_24)))) (let ((_let_48 (EQ_RESOLVE (ASSUME :args (_let_23)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_23 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_49 (EQ_RESOLVE (ASSUME :args (_let_22)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_22 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_50 (EQ_RESOLVE (ASSUME :args (_let_21)) (MACRO_SR_EQ_INTRO :args (_let_21 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_51 (EQ_RESOLVE (ASSUME :args (_let_20)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_20 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_52 (ASSUME :args (_let_19)))) (let ((_let_53 (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO :args (_let_4 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_5)) (MACRO_SR_EQ_INTRO :args (_let_5 SB_DEFAULT SBA_FIXPOINT))) (ASSUME :args (_let_6)) (ASSUME :args (_let_7)) (EQ_RESOLVE (ASSUME :args (_let_8)) (MACRO_SR_EQ_INTRO :args (_let_8 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_9)) (MACRO_SR_EQ_INTRO :args (_let_9 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_10)) (MACRO_SR_EQ_INTRO :args (_let_10 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_11)) (MACRO_SR_EQ_INTRO :args (_let_11 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_12)) (MACRO_SR_EQ_INTRO :args (_let_12 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_13)) (MACRO_SR_EQ_INTRO :args (_let_13 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_14)) (MACRO_SR_EQ_INTRO :args (_let_14 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_15)) (MACRO_SR_EQ_INTRO :args (_let_15 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_16)) (MACRO_SR_EQ_INTRO :args (_let_16 SB_DEFAULT SBA_FIXPOINT))) (ASSUME :args (_let_17)) (EQ_RESOLVE (ASSUME :args (_let_18)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37) :args (_let_18 SB_DEFAULT SBA_FIXPOINT))) _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43 _let_42 _let_41 _let_40 _let_39 _let_38 _let_37))) (let ((_let_54 (EQ_RESOLVE (ASSUME :args (_let_3)) (TRANS (MACRO_SR_EQ_INTRO _let_53 :args (_let_3 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (forall ((S $$unsorted)) (@ (@ (@ tptp.wife tptp.peter) S) S)) _let_35))))))) (let ((_let_55 (ho_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8))) (let ((_let_56 (not _let_36))) (let ((_let_57 (or _let_56 _let_55))) (let ((_let_58 (forall ((V $$unsorted)) (or (not (ho_4 (ho_3 (ho_7 k_6 k_2) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8) V)) (ho_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 V))))) (let ((_let_59 (not _let_58))) (let ((_let_60 (or _let_59 _let_55))) (let ((_let_61 (forall ((W $$unsorted) (BOUND_VARIABLE_1830 |u_(-> $$unsorted Bool)|)) (or (not (forall ((V $$unsorted)) (or (not (ho_4 (ho_3 (ho_7 k_6 k_2) W) V)) (ho_4 BOUND_VARIABLE_1830 V)))) (ho_4 BOUND_VARIABLE_1830 W))))) (let ((_let_62 (not _let_60))) (let ((_let_63 (not _let_61))) (let ((_let_64 (EQ_RESOLVE (ASSUME :args (_let_1)) (TRANS (MACRO_SR_EQ_INTRO _let_53 :args (_let_1 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (forall ((W $$unsorted) (P (-> $$unsorted Bool))) (or (not (forall ((V $$unsorted)) (or (not (@ (@ (@ tptp.wife tptp.peter) W) V)) (@ P V)))) (@ P W)))) _let_63))))))) (let ((_let_65 (or))) (let ((_let_66 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_64) :args (_let_63))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_63) _let_61))) (REFL :args (_let_62)) :args _let_65)) _let_64 :args (_let_62 true _let_61)))) (let ((_let_67 (_let_58))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_54 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 QUANTIFIERS_INST_CBQI_CONFLICT)) :args (_let_35))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_57)) :args ((or _let_55 _let_56 (not _let_57)))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_60 1)) _let_66 :args ((not _let_55) true _let_60)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_67) :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_8 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (ho_4 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_9 V) true))))) :args _let_67)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_60 0)) (CONG (REFL :args (_let_60)) (MACRO_SR_PRED_INTRO :args ((= (not _let_59) _let_58))) :args _let_65)) :args ((or _let_58 _let_60))) _let_66 :args (_let_58 true _let_60)) :args (_let_57 false _let_58)) :args (_let_56 true _let_55 false _let_57)) _let_54 :args (false true _let_36 false _let_35)) :args (_let_34 _let_33 _let_32 _let_31 _let_30 _let_29 _let_28 _let_27 _let_26 _let_25 _let_24 _let_23 _let_22 _let_21 _let_20 _let_19 _let_18 _let_17 _let_16 _let_15 _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 _let_4 (@ tptp.mreflexive tptp.peter) (@ tptp.mreflexive tptp.john) _let_3 (@ tptp.mtransitive tptp.peter) (@ tptp.mtransitive tptp.john) (@ tptp.mtransitive _let_2) _let_1 true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 0.21/0.55  )
% 0.21/0.55  % SZS output end Proof for PUZ084^1
% 0.21/0.55  % cvc5---1.0.5 exiting
% 0.21/0.56  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------